Uninterrupted Power for 5G Base Stations How the 51.2V 100Ah Rack Battery Solves Critical Energy Challenges

Introduction: The Silent Crisis Behind 5G’s Global Expansion

The rollout of 5G networks promises lightning-fast connectivity and revolutionary IoT applications, but beneath this technological leap lies a critical challenge: power reliability. With 5G base stations consuming 3-4 times more energy than their 4G counterparts (GSMA 2023) and millions of new sites deployed annually, traditional power solutions are buckling under the strain. Remote stations in developing regions battle erratic grids, while urban installations face volatile load spikes from dense user traffic. For telecom operators, even a momentary power interruption can trigger cascading outages, tarnishing brand reputation and incurring steep penalties under strict Service Level Agreements (SLAs). In this high-stakes landscape, the 51.2V 100Ah Server Rack Battery emerges as a transformative solution, engineered to deliver zero-downtime performance across the harshest environments.

 


Section 1: Why 5G’s Energy Demands Are Reshaping Power Infrastructure

The transition to 5G isn’t merely an upgrade—it’s a complete overhaul of energy dynamics. Modern base stations integrate power-hungry technologies like Massive MIMO antennas and edge computing nodes, driving average power consumption to 5-10kW per site. Unlike 4G’s steady load profile, 5G’s reliance on millimeter-wave frequencies and ultra-dense deployments creates sudden power surges, with fluctuations exceeding 200% in milliseconds. These spikes demand backup systems capable of near-instantaneous response, a feat traditional lead-acid batteries fail to achieve due to their sluggish discharge rates.

Compounding this challenge is the geographic spread of 5G infrastructure. To ensure coverage, operators are forced to deploy stations in off-grid deserts, remote mountain ranges, and flood-prone coastal zones—environments where grid instability is the norm. The International Telecommunication Union (ITU) reports that 40% of rural base stations in emerging markets experience daily voltage fluctuations, leading to frequent equipment damage and service disruptions. For operators, the financial toll is staggering: a single hour of downtime can cost upwards of $10,000 in SLA penalties, not to mention lost customer trust.

 


Section 2: The 51.2V 100Ah Rack Battery – A Technical Breakthrough for 5G’s Toughest Challenges

At the heart of this solution lies cutting-edge lithium iron phosphate (LFP) chemistry, a technology born from aerospace and EV industries, now optimized for telecom rigor. Unlike legacy systems, the 51.2V rack battery achieves <10ms grid-to-battery transition speeds, effectively eradicating micro-outages that plague 5G’s sensitive hardware. This rapid response is enabled by an AI-driven Battery Management System (BMS) that continuously monitors load patterns, preemptively allocating power reserves for sudden surges.

Durability is another cornerstone. Engineered to withstand temperatures from -20°C to 55°C and protected by an IP55-rated enclosure, these batteries thrive in environments that cripple conventional alternatives. In the Sahara Desert, where sandstorms and 50°C heat render lead-acid batteries useless within months, telecom operators using the 51.2V rack units report zero failures over 18 months of continuous operation. Similarly, in Siberia’s -30°C tundra, the batteries’ self-heating cells maintain stable performance, eliminating the need for costly external heating systems.

Real-world deployments underscore their impact. A Southeast Asian telecom giant replaced 1,200 lead-acid units with the 51.2V rack batteries across remote mountain sites, slashing outage rates by 92% within a year. Meanwhile, a hybrid solar-battery installation in Nigeria’s Niger Delta reduced diesel generator runtime by 70%, cutting CO2 emissions by 450 tons annually—a win for both profitability and sustainability.

 


Section 3: Lead-Acid Batteries – An Obsolete Technology in the 5G Era

Despite their lower upfront cost, lead-acid batteries are a false economy for modern networks. Their limitations begin with energy density: at just 30-50 Wh/kg, they occupy triple the space of lithium alternatives, forcing operators to allocate precious real estate for bulky battery rooms. Maintenance is another burden—lead-acid units require monthly water refills, terminal cleaning, and ventilation to manage toxic acid fumes, all impractical for remote sites.

Cycle life tells a grimmer story. While a typical lead-acid battery lasts 300-500 cycles (2-3 years) before capacity plummets, the 51.2V rack battery delivers 6,000+ cycles at 80% depth of discharge, ensuring a decade of service with minimal degradation. Over a 10-year span, the Total Cost of Ownership (TCO) gap becomes undeniable: lead-acid systems incur 15,000∗∗inreplacementsandlabor,versus∗∗8,200 for lithium—a 40% saving that scales exponentially across large networks.

 


Section 4: Pioneering the Future – Smart Energy Ecosystems for 5G and Beyond

The 51.2V rack battery isn’t just a backup solution; it’s a gateway to intelligent energy ecosystems. Advanced BMS software integrates with grid management platforms, enabling operators to participate in demand-response programs. During peak hours, stored energy can be sold back to utilities, transforming base stations into revenue-generating assets.

Looking ahead, AI-powered predictive analytics will redefine maintenance. By analyzing historical performance data and real-time health metrics, the system alerts engineers days before potential issues arise—a proactive approach that could reduce emergency repairs by 80%.

 

Conclusion: Powering Progress Without Compromise

In the race to dominate 5G, uninterrupted power isn’t optional—it’s existential. The 51.2V 100Ah Server Rack Battery offers operators a proven path to eliminate downtime, slash costs, and future-proof their networks against tomorrow’s energy challenges. As one CTO of a European telecom leader noted, “This isn’t just an upgrade; it’s the foundation for our next decade of growth.”

What's the difference between PWM controller and MPPT controller?

1. What is a photovoltaic solar charge controller and the role of photovoltaic solar controller?

Solar controller is called photovoltaic solar charge/discharge controller, which is an automatic control device to control the solar cell array charging the battery and the battery power supply to the solar inverter load in the photovoltaic power generation system. It can set the control conditions according to the charging and discharging characteristics of the battery to control the solar cell module and battery power output to the load, and its main function is to protect the battery and stabilize the working condition of the power station.

 

2. What are the classifications of common PV solar charge controllers?

Photovoltaic solar charge controllers can be basically divided into five types: parallel photovoltaic controllers, series photovoltaic controllers, pulse width modulation photovoltaic controllers (PWM), intelligent photovoltaic controllers and maximum power tracking photovoltaic controllers (MPPT). Here we focus on PWM and MPPT.

Eco-Worthy PWM solar charge controller

Eco-Worthy MPPT solar charge controller

3. What are PWM and MPPT?

PWM and MPPT are two different charging method controllers for solar charging, which can be used to charge batteries with the current generated by solar modules. Both technologies are widely used in off-grid solar systems, and both work well to efficiently charge batteries. Selecting a PWM or MPPT controller is not based purely on which charging method is "better", but rather on which type of controller will be most effective in your system.

 

PWM controller: Pulse-Width Modulation

Pulse Width Modulation (PWM) refers to the control of analog circuits using the digital output of a microprocessor, a method of digitally encoding the level of an analog signal. Controlling analog circuits digitally can significantly reduce the cost and power consumption of a system. Many microcontrollers contain PWM controllers within them.

 

The figure below shows the PV panel access voltage and current on the left and the load voltage and current on the right;

MPPT controller: Maximum Power Point Tracking (MPPT)

 

To understand the difference between PWM and MPPT charging, let's first look at the power curve of the PV panel. The power curve is important because it shows how much power the PV panels are expected to generate. The PV panel produces a voltage ("V") and a current ("I"). The voltage at which the maximum power is generated is called the "maximum power point". The MPPT will be tracked dynamically throughout the day, depending on the lighting conditions. p=U*I (P is the power generated by the PV panels).

Comparison of usage scenarios:

PWM controller: applicable to small solar PV systems, such as home lighting systems, small solar battery packs, etc.

MPPT controller: applicable to large solar PV systems, such as solar power stations, agricultural irrigation systems, etc.

 

Advantages and disadvantages comparison:

Advantages of PWM controller:

  • Simple structure, low cost.
  • Suitable for small systems, cost-sensitive scenarios.

 

Disadvantages of PWM controller:

  • Lower efficiency, cannot fully utilize the maximum power of the solar panel.
  • The efficiency is even lower when there is a large difference between the battery voltage and the solar panel voltage.

 

Advantages of MPPT controllers:

  • Higher efficiency to fully utilize the maximum power of the solar panel.
  • When the gap between the battery voltage and the solar panel voltage is large, the efficiency advantage is more obvious.

 

Disadvantages of MPPT controller:

  • Complex structure, high cost.
  • Suitable for large systems, the pursuit of efficiency scenarios.

Why Choose a 51.2V 100Ah Home Energy Storage Battery?

When it comes to home energy storage, the 51.2V 100Ah lithium iron phosphate (LiFePO4) battery stands out as a reliable, efficient, and future-proof solution. Here’s why this battery is the perfect choice for your home energy needs:

1. High Energy Density for Daily Household Power Needs

  • What is Energy Density?

Energy density refers to the amount of energy stored in a battery relative to its size or weight. The 51.2V 100Ah Lithium battery offers high energy density, meaning it can store more power in a compact and lightweight design.

  • Power for Everyday Use

With a capacity of 5.12 kWh (51.2V × 100Ah = 5120Wh), this battery can easily power essential household appliances such as lights, refrigerators, TVs, and computers, ensuring uninterrupted energy supply even during outages.

2. Exceptional Lifespan for Long-Term Savings

  • 6000 Cycle Lifespan

Our 51.2V 100Ah Lithium battery uses advanced LiFePO4 technology, rigorously tested to deliver up to 6000 cycles. This means it can last over 16 years with daily charging and discharging, significantly outperforming traditional lead-acid batteries (300-500 cycles).

  • Low Degradation Rate

Even after thousands of cycles, the battery maintains stable performance with minimal capacity loss, ensuring long-term reliability.

3. Superior Safety for Peace of Mind

  • Stable Chemistry

LiFePO4 batteries are known for their thermal and chemical stability, making them resistant to overheating, overcharging, and short circuits. This makes them far safer than other lithium-ion batteries (e.g., NMC batteries).

  • Built-In Protection

Equipped with an advanced Battery Management System (BMS), the 51.2V 100Ah Lithium Battery monitors and protects against overcharging, over-discharging, and overcurrent, ensuring safe operation in any home environment.

4. High Efficiency for Optimal Energy Use

  • Fast Charging

The battery supports rapid charging, allowing it to recharge quickly and keep your home powered without interruption.

  • High Discharge Efficiency

It delivers stable power output, making it ideal for high-power household appliances like air conditioners and washing machines.

  • Perfect for Solar Integration

This battery seamlessly pairs with solar power systems, storing excess solar energy during the day and releasing it at night for maximum energy utilization.

5. Eco-Friendly and Sustainable

  • Non-Toxic Materials

LiFePO4 batteries are free from harmful heavy metals like lead and cadmium, making them environmentally friendly.

  • Recyclable

The materials used in these batteries are recyclable, reducing waste and promoting a circular economy.

  • Reduced Carbon Footprint

By storing renewable energy, this battery helps households reduce reliance on grid power and lower carbon emissions.

6. Flexible Installation and Low Maintenance

  • Modular Design with Expandable Capacity

The 51.2V 100Ah Lithium Battery supports up to 15 units in parallel, allowing you to scale your energy storage system as your needs grow.

  • Maintenance-Free

Unlike lead-acid batteries, LiFePO4 batteries require no regular maintenance, saving time and effort.

  • Quiet Operation

The battery operates silently, making it ideal for home installations without noise disruption.

7. Cost-Effective with High ROI

  • Save on Electricity Bills

By storing solar energy or charging during off-peak hours, this battery helps reduce electricity costs significantly.

  • Energy Independence

It minimizes reliance on the grid, especially in areas with high peak electricity rates.

  • Long-Term Investment

With a lifespan of 6000 cycles and minimal maintenance, the battery offers excellent long-term value.

8. Versatile for Multiple Home Applications

  • Backup Power for Outages

During power outages or emergencies, the 51.2V 100Ah Lithium Battery ensures uninterrupted power for critical appliances.

  • Off-Grid Living

It’s an ideal solution for remote or off-grid homes, providing reliable energy storage.

  • Outdoor and RV Use

The battery is also perfect for camping, RVs, and other outdoor activities, offering portable and reliable power.

9. Smart and Future-Ready

  • Smart Home Integration

The battery can be integrated with smart home systems for remote monitoring and energy management, optimizing energy usage.

  • Scalable for Future Needs

Server Rack LiFePO4 Battery,With support for up to 15 parallel connections, the system can easily expand to meet growing energy demands.

 

Conclusion: Why Choose the 51.2V 100Ah Home Energy Storage Battery?

The 51.2V 100Ah LiFePO4 battery is the ultimate choice for home energy storage, offering high energy density, an exceptional 6000-cycle lifespan, top-tier safety, and eco-friendly performance. Its expandable design (up to 15 units in parallel) ensures flexibility and scalability, making it suitable for a wide range of household needs. Whether you’re looking to save on electricity bills, ensure backup power, or achieve energy independence, this battery delivers unmatched reliability and value.

How DX Precision Cooling Is Changing Heat Dissipation in IT Spaces

As digital infrastructure expands rapidly, efficient thermal management has become critical to ensuring the stability and longevity of IT operations.
At Coolnet, we continue to lead in the development of precision cooling technologies that deliver intelligent, energy-efficient solutions for today’s
demanding data environments. Among them, DX (Direct Expansion) cooling systems remain a cornerstone for modern IT spaces.

Why
DX Cooling?
Unlike chilled water systems that rely on centralized infrastructure, DX systems work by using refrigerant to absorb and discharge heat through a
closed-loop process. The refrigerant evaporates in the indoor unit as it absorbs heat from IT equipment, then condenses in the outdoor unit to
release that heat, completing the cycle. This design makes DX systems compact, easier to deploy, and ideal for smaller or modular setups.
One of the key advantages of DX cooling is its flexibility. Since there's no need for chilled water pipes within the data hall, the risk of leaks near
sensitive servers is significantly reduced. This makes DX systems particularly well-suited for environments such as telecom shelters, edge
computing nodes, and network closets—spaces where space and risk must be tightly controlled.

Smarter, More Efficient Performance
Today’s DX systems have evolved beyond static performance. Variable-speed compressors, intelligent expansion valves, and adaptive fans now
allow these systems to respond dynamically to
real-time load conditions. Instead of operating at full power constantly, the system adjusts cooling
output based on actual demand—driving down energy use while maintaining consistent thermal performance.
Some units in Coolnet’s product line, such as those in the Cool-Smart series, bring this intelligent, compact approach to edge applications and
small server rooms. With flexible airflow configurations and remote monitoring capabilities, they support both efficient operation and easy scaling.
Meanwhile, for larger-scale or high-load environments, our CyberMaster series DX unit integrates high-performance components and advanced
control algorithms. These systems are designed to adapt seamlessly to fluctuating heat loads, maintaining stability in dynamic IT environments
while optimizing energy consumption.
In high-density applications like modular data centers or rack-intensive deployments, close-coupled cooling becomes essential. That’s where
Coolnet’s Cool-Row systems come in—delivering precision airflow directly between server racks to prevent hot and cold air mixing. This approach
enhances cooling effectiveness and supports redundancy strategies like N+1 for mission-critical uptime.
 DX cooling system
Supporting Sustainable Operations
One of the most promising developments in DX cooling is the introduction of free cooling modes. When outdoor temperatures are low, the system
can bypass the
compressor and circulate refrigerant using low-power pumps. This significantly reduces energy consumption and system wear,
particularly in cooler climates or during nighttime operation.
In optimized configurations and favorable climates, DX cooling systems with free
cooling modes can significantly reduce energy consumption, helping data centers move closer to lower PUE targets and sustainability goals.
Adding to this is the rise of centralized smart control platforms, which continuously monitor and adjust system behavior based on IT load, ambient
temperature, and humidity. These platforms ensure not just thermal stability, but also prevent overcooling—another major source of energy waste.

Conclusion
As IT environments continue to evolve, the demand for smarter, more responsive, and energy-efficient cooling solutions is becoming increasingly
urgent. DX precision cooling systems—equipped with variable-speed components, advanced control algorithms, and free cooling capabilities—present
a powerful option for meeting the thermal demands of modern digital infrastructure.
By delivering scalable performance, reducing operational risk, and supporting sustainability goals, these systems are helping IT leaders build more
resilient and cost-effective operations.
Interested in how DX cooling can optimize your data center or IT space?
Contact the Coolnet team for expert consultation and tailored solutions.
 
 

Invitation to attend the Shanghai Street Lighting Exhibition

18th (2025) International Photovoltaic Power Generation and Smart Energy Conference & Exhibition

 

Date: 2025.6.11-13
Location: National Exhibition and Convention Center, Shanghai
Our Booth: A311 (Hall 6.1 H)

E-mail: brandon@szleadray.com

Mobile no.:+86 -135 9045 0026

 

Dear Friends,
We are excited to invite you to visit our booth at the PV Power and ES EXPO.
This is a great opportunity to explore ourlatest SOLAR LIGHTING PRODUCTS and discuss how we can support your business needs.
We look forward to welcoming you! Shenzhen Leadray Optoelectronic Co., Ltd.

 

 

 

If you need to showcase your business or products, you can provide a brief introduction. I will assist in extracting the core selling points (such as engineering cases, technical advantages), and optimize the business communication language (such as emphasizing "energy saving rate" and "reduction of operation and maintenance costs" for municipal customers).

 

The Shanghai Street Lighting Exhibition, as a leading platform in the industry, invites you to attend the Shanghai Street Lighting Exhibition.

 

Shanghai Street Lighting Exhibition

 

Shanghai Street Lighting Exhibition

 

 

You can watch new energy storage technologies (such as the application of sodium-ion batteries in low-temperature environments), as well as the waterproof and wind-resistant standards for the integration of photovoltaic panels and lamp poles (such as the innovative structure of anti-tropical typhoon lamp poles in coastal areas).

 

We look forward to in-depth communication with you at the exhibition.

 

LEADRAY can jointly develop an exhibition roadmap based on your business needs (such as seeking lamp manufacturers, controller suppliers, or engineering partners), and conduct efficient visits to target booths, simultaneously recording the production capacity, qualifications, and past project cases of the suppliers.

 

 

If you have confirmed the exhibition date, we can further discuss the specific itinerary. I will dynamically optimize the strategy based on the real-time information of the exhibition (such as new exhibitors and forum guests) to help you efficiently obtain industry resources and technical insights. I look forward to in-depth communication with you at the exhibition and jointly exploring the innovative opportunities in the lighting industry!

 

 

Comprehensive Guide to Solar Inverters

Unlocking the “Smart Brain” Behind Your Solar System

 

As renewable energy continues to grow rapidly, solar power is becoming a popular choice for homes and businesses alike. In a complete solar power system, while solar panels often take center stage, there's another crucial yet often overlooked component—the solar inverter.

 

More than just a converter, the inverter serves as the system’s command center, directly impacting the efficiency and user experience of your entire solar setup. To truly understand solar energy, you must first understand the solar inverter.

 

What Is a Solar Inverter?

When solar panels absorb sunlight, they generate direct current (DC) electricity through the photovoltaic effect. However, our household appliances and the grid use alternating current (AC). This is where the solar inverter comes in—it converts DC into AC, making the power usable for your home or business.

 

In simple terms: solar panels are your "power plant," and the inverter is your "power dispatcher."

 

Common Types of Solar Inverters

Different applications require different inverters. Here are the most common types on the market today:

 

1. String Inverter

Connects multiple solar panels in a series to a single inverter.

 

Best for: Simple rooftops with no shading

 

Pros: Cost-effective, easy to maintain

 

Cons: One panel's issue may reduce the efficiency of the entire string

 

2. Microinverter

Each panel has its own small inverter.

 

Best for: Shaded rooftops or multi-directional arrays

 

Pros: Independent operation per panel, higher efficiency, easier monitoring

 

Cons: Higher cost

 

3. Power Optimizer System

Similar to microinverters but used in combination with a centralized inverter.

 

Best for: Balancing cost and performance

 

Pros: Individual panel optimization for better overall performance

 

Cons: Slightly more expensive than string systems

 

4. Hybrid Inverter

Combines inverter and battery management functions.

 

Best for: Systems with energy storage

 

Pros: Supports both grid-tied and off-grid modes, versatile

 

Cons: More complex system, higher cost

 

Notably, today’s market offers many High-Efficiency Solar Hybrid Inverters that enhance energy conversion while supporting diverse power scenarios, offering greater flexibility for users.

 

How Does a Solar Inverter Work?

A typical inverter performs the following steps:

 

DC Input: Solar panels collect sunlight and produce DC electricity

 

Power Conversion: The inverter converts DC to AC electricity

 

System Management: Modern inverters offer real-time monitoring, grid coordination, and fault protection

 

Key Installation Considerations

The installation location of your solar inverter significantly affects its performance and lifespan. Here are a few critical tips:

 

Well-ventilated: Inverters generate heat during operation—avoid enclosed or hot spaces

 

Protect from sun and rain: Install in shaded areas or use weatherproof enclosures

 

Proximity to panels and distribution box: Reduces cable length and energy loss

 

Professional installation: Must be done by certified electricians to meet safety standards

 

For off-grid areas without access to public utilities, a reliable Off Grid Hybrid Solar Inverter can ensure complete energy independence—ideal for remote areas, islands, or emergency reserves.

 

Grid-Tied, Off-Grid, or Hybrid—Which System Fits You?

Grid-Tied: Sell excess power back to the grid for maximum returns

 

Off-Grid: Fully independent system with battery storage—suitable for remote or unstable grid areas

 

Hybrid: Combine storage and grid connection—sell excess, store backup

 

Tip: In areas with frequent power outages, a hybrid system offers the best reliability.

 

In high-load scenarios like industrial sites or business parks, using a Three Phase Energy Storage Inverter ensures stable three-phase output and efficient power management.

 

How to Choose the Right Solar Inverter

Don’t just go for the cheapest option. Consider these essential factors:

 

Capacity Match: The inverter’s power rating should align with your solar panel array

 

Conversion Efficiency: Choose models with ≥97% efficiency

 

Smart Features: Look for Wi-Fi monitoring, remote control, etc.

 

Brand and Warranty: Reliable brands offer 5–10 year warranties

 

Compliance: Meets local safety and grid connection standards (e.g., CE, TUV, UL)

 

A solar inverter doesn’t generate electricity, but it is the bridge that connects clean energy to your daily life. Choosing a high-performance, well-matched inverter not only boosts your system's output but also ensures safe operation for over a decade.

 

Whether you’re aiming to cut electricity bills, embrace a greener lifestyle, or ensure continuous power supply—the solar inverter is your indispensable partner in entering the solar era.

 

Let your inverter be the smart core of your solar system—using technology to empower a cleaner, brighter future.

How to choose a suitable solar mounting system?

First, we know that solar energy is the most important basic resource. Achieving a high percentage of renewable energy replacement is a world trend. So in the future, solar energy will be more common, so what role does the solar mounting system play in realizing the rapid and healthy development of the photovoltaic power generation industry?

 

As we all know, although solar energy is a beneficial and harmless energy source, the price of solar panels may be an expensive investment for the vast majority of people. Therefore, the mounting system must be kept in the best state, and choosing a good solar mounting system will increase the service life of the solar system.

 

The solar mounting system is mainly divided into: ground solar mounting system, agriculture greenhouse mounting system, solar roof mounting system and solar carport mounting system.

 

1. If you have a large area with enough open space and good sunlight exposure, we recommend that you choose a ground solar mounting system, which is simple and convenient to mount, saving mounting time.

 ground mounted solar panel frames

 

 

2.Solar agricultural greenhouse mounting system uses an aluminum or steel frame to cover the solar photovoltaic modules of the greenhouse, while ensuring solar photovoltaic power generation and lighting of the entire greenhouse crops.

 

 agricultural farmland mounting system price

 

3.The solar roof mounting system is to mount a solar power generation device on the roof, and use solar photovoltaic technology to generate electricity in the field of construction. Roof mounting system is also divided into flat roof and sloped roof, sloped roof mounting system is also divided into corrugated roof solar mounting system and metal roof solar mount racking system.

 roof mounting systems for solar panels

 

4.Solar photovoltaic carport is a system that combines photovoltaic power generation with carport. The aluminum frame solar carport harnesses the power of the sun to create clean photovoltaic energy to charge, light and feed electric vehicles into the grid.

 

 aluminum waterproof carport mounting system

 

According to the introduction of the above pandasolarpv solar mounting systems, do you know how to choose a suitable solar mounting system? If you have any questions, please feel free to contact us.We will have specialized technical staff to solve your doubts.

 



 

China Nanjing PEGE Cryogenic deflashing machine was spoken highly of by customer who has an old cryogenic deburring machine before

China Nanjing PEGE Cryogenic deflashing machine was spoken highly of by customer who has an old cryogenic deburring machine before

After half a year's stable and long time running of our Cryogenic Deflashing Machine in customer's factory. Customer speaks highly of our CRYOGENIC DEBURRING machine quality and performance with following points:
1. Higher efficiency and higher productivity, 30% higer than old rubber deflashing machine.
2. Less failures due to reasonable design and better production technology.
3. Great Media blasting and flash separation system to ensure large blasting power as well excellent flash and media separation ability.
4. Stable and wonderful electrical control system with Mistubishi, Schneider top brand components.
5. Improvements on details like door handle, gear box sealing, door sealing, media chamber holder and so on reduce a lot of maintenance and down-time.



Thanks very much for esteemed client's high appreciation, Nanjing PEGE surely works hard and provides best production and service.

China PEGE Cryogenic Deflashing and Cryogenic Deburring Machine Comparative Advantages

The main features of China PEGE cryogenic deflashing and cryogenic deburring machine

 

1. The whole frame of the cryogenic deflashing equipment is made of high quality 304 stainless steel, the thickness of the steel pipe is 3mm, which is strong, durable and upscale.

2. The projectile wheel can be made of stainless steel, strong and durable.

3. The width of the projectile wheel is increased to 70mm for 120T and 150T, the projectile wheel range is wider, and the projectile efficiency is increased by 20%.

4. Using MCGS high-end touch screen, can store more than 20,000 pieces of product information, storage, reading, downloading, editing, host control and upgrading the scanner and other functions. Improve the tracking and traceability of product processing, adapt to the modern enterprise intelligent, digital management requirements.

5. The Blasting wheel motor of cryogenic deburring machine is selected from the reliable brand FUKUTA, and can also be equipped with Mitsubishi imported motors.

6. The deflector is made of stainless steel, which is free of replacement for life. Our deflashing equipment has no impeller rotor, which can reduce the maintenance cost.

7. The sealing plate of the ejector wheel is made of ultra-high polymer UPE material, the thickness is increased by 1 times, and the wear-resisting performance is increased by 100%.

8. T120,T150 models use 7.5KW high power motor, with 600mm width vibrating screen, processing efficiency and sorting efficiency significantly improved.

9. The gear box sealing system is excellent, in addition to the labyrinth design, our company also adds a layer of sealing plate to protect the oil seal.

10. Bevel gears do not use straight tooth structure, using helical tooth structure, high degree of overlap, large contact area, less wear and tear, increase the service life of bevel gears.

11. The door sealing strip is made of imported material and equipped with double heating wire, which has good heating effect and long service life, and there will be no door leakage.

12. Inverted trapezoidal compact design, nozzle built-in, reduce the overall chamber volume, reduce liquid nitrogen consumption.

13. The parts basket/barrel mouth can be closer to the ejection wheel, the injection effect is enhanced, and the processing efficiency is effectively improved.

14. The nitrogen deflashing machine's electrical cabinet and chamber are separated and independent, the electrical cabinet will not be affected by the cold air and dust from the chamber, which improves the cleanliness and the use of electrical appliances. 

15. The bottom and back of the door opening method adopts a simple and lightweight door suction device, and eliminates the latch locking door, so that there is no need to purchase a replacement life for the latch afterward. 

16. The front door of the nitrogen rubber deflashing equipment is fitted with three high-quality hinges at the top, middle and bottom of the door frame and the reinforcing bars are increased, so that it can avoid deformation of the door after a long time of use effectively. 

After long time use, it can effectively avoid the deformation of the front door. Back, bottom, electrical cabinet door plate thickness is high, heavy and not deformed.

Consumables for cryogenic rubber trimming machine –Liquid nitrogen and Its container

Consumables for cryogenic rubber trimming machine – supply of liquid nitrogen

 

The frozen rubber deflashing machine, as an essential auxiliary manufacturing machinery in the production process of rubber enterprises, has been indispensable.

 

However, since its entry into the China mainland market around the year 2000, local rubber enterprises have little knowledge of the working principles and processes of the cryogenic deflashing machines.

Therefore, this article will provide a detailed introduction to the storage and supply methods of the cryogen, liquid nitrogen, for the cryogenic deflashing machines.

 

In the past, liquid nitrogen was typically stored in separate liquid nitrogen tanks. Therefore, when purchasing a cryogenic deflashing machine, it was necessary to buy a matching liquid nitrogen tank to ensure the proper operation of the machine.

The installation of the liquid nitrogen tank required approval from the relevant authorities, which was a cumbersome process, and the tanks themselves were expensive. This has led many factories that urgently need to use cryogenic deflashing machiness to improve work efficiency to hesitate, as it also involves a certain upfront cost investment.

 cryogenic deflashing machinecryogenic deflashing machine

Nanjing PEGE has introduced a liquid nitrogen manifold supply station to substitute for liquid nitrogen tanks.

This cryogenic deflashing system centralizes the gas supply of individual gas points, enabling multiple low-temperature Dewar flasks to be combined for centralized gas supply. It solves the cumbersome process of handling liquid nitrogen tanks, allowing customers to operate the cryogenic deflashing machines immediately after purchase.   Above are good options for the container of the Liquid Nitrogen.

 

The main body of the cryogenic deflashing system simultaneously connects three bottles of liquid nitrogen Dewar flasks, and it also includes a port that can be expanded to accommodate four bottles.

The cryogenic deflashing system pressure is adjustable and equipped with a safety valve. It’s easy to assemble and can be mounted on the wall using a triangular bracket or placed on the ground using the bracket.

Nanjing PEGE always provide strong technical support for customer to better use the cryogenic deflashing system.